
High Performance
Situation Display Capability

for the CNS/ATM Domain

Jean-Marie Dautelle Waseem Naqvi
Jean-Marie_R_Dautelle@raytheon.com Waseem_Naqvi@raytheon.com

Raytheon
Network Centric Systems

Marlborough, MA, 01752
Tel: 508.490.3635

ICNS 2003 6/4/20032

Outline

• Motivation

• State of the Art

• Architecture

• Real-time constraints

• Recording

• Summary

ICNS 2003 6/4/20033

Raytheon has Deployed many
CNS/ATM Systems Worldwide

Customers have unique display preferences!

ICNS 2003 6/4/20034

Current State-of-the-Art

• Displays are component based
• Windows, Icons,

Mouse, Pointers (WIMP)
• ABC Keyboards, range dials,

examples of ease of use

• Current display components are software rendered (sequence of paint
commands)
• CPU intensive
• Constrained by graphic-port bandwidth (e.g. AGPx8)

AGPx4 Graphics
Rendering Engine

CPU

100 ms

20 M Triangles/sec

bottleneck

Sequence of
paint commands

The graphics hardware isn’t used to advantage

ICNS 2003 6/4/20035

Our Approach

• Current graphic toolkits decompose complex objects into sequence
of paint operations, the hardware doesn’t get the big picture

• New 3D graphics hardware are optimized to render virtual models
(scene graph) rapidly – without CPU interaction

Our approach
• Upload our virtual model of

the complete display to the
hardware for extremely rapid
rendering

• Performance is >10x faster
than traditional method

Let the hardware render the display

ICNS 2003 6/4/20036

Architecture & Implementation

• Layered Architecture

• Platform independence
• Abstract Factory Pattern
• Implementation using JavaTM

• Standard component interface
• Swing-like (Java graphics standard)

• Training/Tutorials
• Documentation
• Ready access to skills base

Component API

Factories (e.g. OpenGL, DirectX, Java2D
Graphics API

Domain API

Application

Best practices employed

ICNS 2003 6/4/20037

Java and Real-Time Constraints

• Issues with Java
• Java is non-deterministic

• Use of incremental garbage
collection (GC)

• Scene-graph hardware based
rendering is not affected by Java
GC

• Performance
• Rendering is performed by the

hardware. The main CPU is free
to carry on others time-critical
tasks (e.g. input/output)

“Rendering of Situation Displays (e.g. Air Traffic Control) has to be performed
on demand and has to be time-bounded”

The display framework has addressed Java shortcomings

ICNS 2003 6/4/20038

ATC Displays

In the field of Air Traffic Control, it is desirable to
be able to record/playback the data being
displayed to the controller in case of accident, for
simulation purposes, training, etc.

Recording needs to be 100% accurate.

Conventional techniques include:
• Hardware recording (e.g. video recorder) generating a huge

amount of data.
• Software recording requiring additional code to

record/playback accurately every possible action and state.

C2/ATMS systems require recording of events

ICNS 2003 6/4/20039

Patented Dynamic Snapshot
Approach

“Instead of recording the snapshot state itself, we record the minimal
set of commands, which would put the system in the snapshot

state”

This sequence of commands is referred as “The dynamic
Snapshot”.

During recording or playback, it is
possible to “move” the dynamic
snapshot through time without
affecting the operation of the system
in a substantive way.

Snapshot are transparently captured

ICNS 2003 6/4/200310

Advantages of the Dynamic
Snapshot Approach

• No need to serialize/de-serialize the objects (only the
commands).

• The default object’s state does not need to be recorded.
• If the commands are recorded (delta) and time-stamped, then it

is possible to continuously playback the changes to the
system from any "snapshot" point.

• Seeking a particular time, can be performed very quickly by
moving the dynamic snapshot forward and then playing the
“translated snapshot” commands (minimal set).

Lightweight approach provides significant advantages

ICNS 2003 6/4/200311

Integration with our graphic
toolkit

Integration was seamless
and limited to the creation
of a new graphic factory,
within our graphics toolkit

“The recording factory”,
acted as a proxy and
forwarded the commands to
the real factory responsible
for the rendering
operations.

Dynamic snapshots and deltas are captured transparently

ICNS 2003 6/4/200312

Performance

On a typical ATC display at maximum load (1000+ targets):
• Recording takes less than 2% of total CPU usage and is

performed asynchronously by background tasks (no impact on
rendering performance).

• The recording data rate is less than 56Kbits/second.
• The “seeking” time to internally playback up to 10 minutes of

data (the snapshot period) is less than 1 second.
• The dynamic snapshot size “stabilizes” at about 100 Kbytes.

The Dynamic Snapshot approach has proved to be scaleable

ICNS 2003 6/4/200313

Summary

• Very fast (takes full advantage of hardware acceleration)
• Allows real-time display applications to be written using Java

(higher productivity than C++)
• Small footprint
• Uses standard architecture: Short learning curve for Java

programmers familiar with standard “Swing”
• Transparent record/playback capability
• Entirely customizable using XML (component layout, keystroke

binding, button’s action mapping, etc...)
• Runs on any platform with a Java Virtual Machine or Java Compiler

(e.g. GNU Java Compiler)

• Java and the Java logo are the trademarks of Sun Microsystems. All
other trademarks are owned by their respective owners

Our framework allows the building of CNS/ATM displays rapidly

ICNS 2003 6/4/200314

	High Performance Situation Display Capability for the CNS/ATM Domain
	Outline
	Raytheon has Deployed many CNS/ATM Systems Worldwide
	Current State-of-the-Art
	Our Approach
	Architecture & Implementation
	Java and Real-Time Constraints
	ATC Displays
	Patented Dynamic Snapshot Approach
	Advantages of the Dynamic Snapshot Approach
	Integration with our graphic toolkit
	Performance
	Summary
	

